Common Physics Equations

Motion

$$
\begin{gathered}
v_{\text {ave }}=\frac{\Delta x}{t} \\
v_{\text {ave }}=\frac{\left(v_{i}+v_{f}\right)}{2} \\
a=\frac{\Delta v}{t}=\frac{\left(v_{f}-v_{i}\right)}{t} \\
v_{f}=v_{i}+a t \\
v_{f}^{2}=v_{i}^{2}+2 a \Delta x \\
\Delta x=v_{i} t+1 / 2 a t^{2} \\
x=\left(\frac{v_{i}+v_{f}}{2}\right) t
\end{gathered}
$$

> Variables: (mks unit) $v_{\text {ave }}:$ average velocity (m/s) Δx or $x:$ change in position or displacement (m) Δt or $t:$ change in time or time (s) $\Delta v:$ change in velocity $(\mathrm{m} / \mathrm{s})$ $\mathbf{v}_{\mathrm{i}}:$ initial velocity $(\mathrm{m} / \mathrm{s})$ $\mathbf{v}_{\mathrm{f}}:$ final velocity $(\mathrm{m} / \mathrm{s})$ $\mathrm{a}:$: acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$ (note: on many different equation sheets x is substituted by d for displacement)

Projectile Motion	
X axis projectile equation	Y axis projectile equations
$x=v_{x} t$	$\Delta y=v_{i y} t+1 / 2 g t^{2}$
Note: the Y axis equations are the same as the accelerated motion equations above but specialized for something in freefall along the Y axis	$v_{f y}=v_{i y}+g t$
	$v_{f y}^{2}=v_{i y}^{2}+2 g \Delta y$
	$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
	Only if $\mathrm{v}_{\text {iy }}=0$
	$\Delta y=\underset{\text { Becomes }}{v_{i y} t+1 / 2 g t^{2}}$
	$t=\sqrt{\left(\frac{2 \Delta y}{g}\right)}$

Variables (mks unit)

Δy or y : change in position or displacement (m) in the y axis
Δv : change in velocity (m / s)
V_{iy} : initial Y axis velocity (m / s)
V_{fy} : final Y axis velocity (m / s)
g : acceleration due to gravity ($\mathrm{m} / \mathrm{s}^{2}$)

Force and Friction

$$
\begin{gathered}
\sum F=F_{n e t}=\boldsymbol{m a} \boldsymbol{a} \\
\boldsymbol{m}_{1} a_{1}=m_{2} a_{2} \\
\boldsymbol{F}_{W}=\boldsymbol{m g} \\
\boldsymbol{F}_{f}=\mu \boldsymbol{F}_{N} \\
\boldsymbol{F}_{\boldsymbol{s}}=-\boldsymbol{k} \boldsymbol{x}
\end{gathered}
$$

Variables (mks unit)
$\sum F$ or $F_{n e t}:$ vector sum of forces (N)
m : mass (kg)
$\mathrm{a}:$ acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right.$)
F_{w} : weight (N)
F_{f} : Force of friction (N)
μ : coefficient of friction (no unit)
F_{s} : Spring Force (N)
k : spring constant (N / m or $\mathrm{kg} / \mathrm{s}^{\mathbf{2}}$)
x: displacement of stretched spring

Gravitation and Circular Motion

$$
\begin{gathered}
F_{c}=m a_{c} \\
F_{c}=\frac{m v^{2}}{r} \\
a_{c}=\frac{v^{2}}{r} \\
v=\frac{2 \pi r}{T} \\
F_{g}=\frac{G m_{1} m_{2}}{d^{2}} \\
G=6.67 x 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} \\
\mathrm{~T}=F_{\perp} d \\
F_{1} d_{1}=F_{2} d_{2}
\end{gathered}
$$

Variables (mks unit)
F_{c} : centripetal force (N)
a_{c} : centripetal acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
v : velocity (m / s)
r : radius
π : pie (3.14 rounded)
F_{g} : Force of Gravity (N)
G : universal gravitation constant
m_{1} : mass one
m_{2} : mass two
d : distance between objects (m)
T: Torque (Nm)

F_{\perp} : Perpendicular Force (N)

F_{1} and F_{2} represent two different forces created by object 1 or 2
d_{1} and d_{2} represent two different distances that object one or two are from the fulcrum or rotational point

Energy and Momentum

$P E=m g h$
$K E=1 / 2 \mathrm{mv}^{2}$
$P=m v$
Impulse =F Δ t
$F \Delta t=\Delta(m v)$

Elastic Collisions

$\mathrm{m}_{1} \mathbf{v}_{\mathbf{1 i}}+\mathrm{m}_{\mathbf{2}} \mathbf{v}_{\mathbf{2 i}}=\mathrm{m}_{\mathbf{1}} \mathbf{v}_{\mathbf{1 f}}+\mathrm{m}_{\mathbf{2}} \mathbf{v}_{\mathbf{2 f}}$
Inelastic Collisions
$m_{1} v_{1}+m_{2} v_{2 i}=\left(m_{1}+m_{2}\right) v_{f}$

Variables (mks unit)

PE : potential energy (J)
m: mass (kg)
g : acceleration due to gravity $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
h : height (m)
KE : kinetic energy (J)
v : velocity (m / s)
p : momentum ($\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$)
J: Impulse (Ns)
m_{1} : first objects mass (kg)
$\mathrm{v}_{1 \mathrm{i}}$: first objects initial velocity (m / s)
m_{2} : second mass (kg)
$\mathrm{v}_{2 \mathrm{i}}$: second objects initial velocity (m / s)
$\mathbf{v}_{1 \mathrm{f}}$: first objects final velocity (m / s)
$\mathbf{v}_{\text {2f }}$: second object final velocity (m / s)
\mathbf{v}_{f} : combined final velocity (m / s)

Work and Power

$\mathbf{W}=\mathrm{F}_{/ /} \mathrm{d}$
$P=\frac{W}{t}$
$P=\frac{F_{/ / d}}{t}$
$\mathbf{W}=\boldsymbol{\Delta K E}$

Variables (mks unit)

W: work (J)
P: power (W)
$\mathrm{F}_{/ /}$: Force parallel to the motion (N)

Electricity

$F_{e l}=\frac{k q_{1} q_{2}}{d^{2}}$
$k=9.0 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$
$I=\frac{q}{t}$

$E=\frac{\boldsymbol{F}}{\boldsymbol{q}} \quad$	$\mathrm{P}=\mathrm{IV}$
$\mathrm{P}=\mathrm{I}_{2} \mathrm{R}$	

$E=\frac{V}{d}$	$P=\frac{V^{2}}{R}$
$V=\frac{W}{q}$	$P=\frac{E n e r g y}{t}$

q_{e} : charge of electron $=-1.6 \times 10^{-19} \mathrm{C}$

Variables (mks unit)

$\mathrm{Fel}_{\mathrm{el}}$: electrical force (N)
k : coulomb constant
q : charge (C)
q_{1} or q_{2} : multiple objects with charge (C)
d : distance between (m)
I : current (A)
T: time (s)
E : electrical field (N/C)
V : potential difference or voltage (V)
W: work (J)
P: power (W)
R : resistance (Ω or Ohms)

Series Circuit

$$
\begin{aligned}
& V_{e m f}=v_{1}+v_{2}+v_{3}+\cdots \\
& I_{T}=I_{1}=I_{2}=I_{3}=\cdots \\
& R_{T}=R_{1}+R_{2}+R_{3}+\cdots
\end{aligned}
$$

Parallel Circuit

$V_{e m f}=v_{1}=v_{2}=v_{3}=\cdots$
$I_{T}+I_{1}+I_{2}+I_{3}+\cdots$
$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots$

At Device (more in last section)

$V=I R$
$P=I V$

Variables and Subscripts

Subscripts
($1,2,3, \ldots$...) first, second, third resistor or device, and so forth...

T or emf: equivalent or total calculated at the battery or power source

V : voltage (m/s)
I : Current (A)
R : resistance (Ω or Ohms)

Sound and Waves

$v=f \lambda$
$T=\frac{\mathbf{1}}{\boldsymbol{f}}$
$f=\frac{1}{T}$
$v_{\text {sound }}=331 \mathrm{~m} / \mathrm{s}+0.6 \mathrm{~T}_{\left({ }^{\circ} \mathrm{C}\right)}$

Variables (mks unit)

v : velocity (m / s)
f : frequency (Hz)
λ : wavelength (m)
T: period (s)
$\mathrm{V}_{\text {sound }}$: velocity of sound

Optics

$\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{o}}$
$M=\frac{h_{i}}{h_{o}}=\frac{-d_{i}}{d_{o}}$
$\mathrm{n}_{\mathrm{i}} \sin \boldsymbol{\theta}_{\mathrm{i}}=\mathrm{n}_{\mathrm{r}} \sin \boldsymbol{\theta}_{\mathrm{r}}$
$\boldsymbol{\operatorname { S i n }} \theta_{\boldsymbol{c}}=\frac{\boldsymbol{n}_{\boldsymbol{r}}}{\boldsymbol{n}_{\boldsymbol{i}}}$
$\boldsymbol{n}=\frac{\boldsymbol{c}}{\boldsymbol{v}_{\text {material }}}$
$\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \text { Variables (mks unit) } \\
& f: \text { focal length } \\
& d_{i}: \text { distance to image } \\
& d_{i}: \text { distance to object } \\
& M \text { : magnification } \\
& h_{i}: \text { height of image } \\
& h_{0}: \text { height of object } \\
& n \text { : index of refraction } \\
& n_{i}: \text { index of refraction incident side } \\
& n_{r}: \text { index of refraction refracted side } \\
& \Theta_{i}: \text { angle of incidence } \\
& \Theta_{r}: \text { angle of refraction } \\
& \theta_{c}: \text { critical angle } \\
& v_{\text {material }}: \text { velocity of light in a material (m/s) } \\
& c: \text { speed of light or any electromagnetic wave } \\
& \text { in a vacuum (} \left.3 x 10^{8} m / s\right)
\end{aligned}
$$

Trig Reminders

$c^{2}=a^{2}+b^{2}$

$$
\sin \Theta=\frac{o p p}{h y p} \quad \cos \Theta=\frac{a d j}{h y p} \quad \tan \Theta=\frac{o p p}{a d j}
$$

