Skip to content
StickMan Physics

StickMan Physics

Animated Physics Lessons

Menu
  • Home
    • Stickman Physics Music: Blending Science with Sound
    • Unit 1: One Dimensional Motion: Physics Introduction
    • Unit 2: Two Dimensional Motion: Projectile and Non-Projectile
    • Unit 3: Newton’s Laws of Motion and Force
    • Unit 4: Universal Gravitation and Circular Motion
    • Unit 5: Work, Power, Mechanical Energy, and Simple Machines
    • Unit 6: Momentum Impulse and Conservation of Momentum
    • Unit 7: Electrostatics
    • Unit 8: Current and Circuits
    • Unit 9: Magnets and Magnetism
    • Unit 10: Waves
    • Unit 11: Electromagnetic Waves
    • Unit 12: Nuclear Physics
  • Table of Contents
  • Practice
  • Equation Sheet
  • Digital Learning
  • Contact
Menu

Mechanical Energy Problem Solutions

Mechanical Energy Problems and Solutions

See examples of mechanical energy problems involving kinetic energy, potential energy, and the conservation of energy. Check your work with ours.

1. How much gravitational potential energy do you have when you lift a 15 N object 10 meters off the ground?

ME Problem 1

2. How much gravitational potential energy is in a 20 kg mass when 0.6 meters above the ground?

ME Problem 2

3. How much gravitational potential energy does a 35 kg boulder have when 30 meters off the ground?

ME Problem 3

4. How many times greater is an objects potential energy when three times higher?

If you need help on ratio problems click the link below:

Rule of Ones: analyzing equations to determine how other variables change

Example 4 Mechanical Energy Solution

5.  How much kinetic energy does a 0.15 kg ball thrown at 24 m/s have?

ME Problem 5

6.  How many times greater is the kinetic energy of a ball that is going five times faster?

ME Problem 6

7.  How much kinetic energy does a 1.2 kg ball have the moment it hits the ground 3.5 meters below when it starts from rest?

 

I cancelled out the initial kinetic energy because:

  • KEi = ½ mvf2
  • KEi = (½)(3.5)(02) = 0 J

I cancelled out the final potential energy because:

  • PEf = mghf
  • PEf = (3.5)(9.8)(0) = 0 J
ME Problem 7 Solution

8.  How fast is a 1.2 kg ball traveling the moment it hits the ground 3.5 meters below when it starts from rest?

I cancelled out the initial kinetic energy because:

  • KEi = ½ mvf2
  • KEi = (½)(3.5)(02) = 0 J

I cancelled out the final potential energy because:

  • PEf = mghf
  • PEf = (3.5)(9.8)(0) = 0 J

(Note: In many of these problems I could cancel out mass but did not since it was provided)

Since I did not cancel out mass I could answer the following questions if asked:

  • How much mechanical energy did you have at the beginning? (41.6 J)
  • How much kinetic energy did you have at the beginning? (0 J)
  • How much potential energy did you have at the beginning? (41.6 J)
  • How much potential energy do you have at the end? (0 J)

If I cancelled out mass in my work it would not show the actual initial potential energy since PEi = mgh and not just gh.

 

ME Problem 8 Solution

9.  A 3.5 kg ball fell from a height of 12 meters.  How fast is it traveling when its still 5 meters off the ground?

I cancelled out the initial kinetic energy because:

  • KEi = ½ mvf2
  • KEi = (½)(3.5)(02) = 0 J
ME Problem 9

10. An 85kg roller coaster cart is traveling 4 m/s at the top of a hill 50 meters off the ground.  How fast is it traveling at top of a second hill 20 meters off the ground?

ME Problem 10

Links

  • Back to the Mechanical Energy Page
  • Back to the Main Work, Power, Mechanical Energy, and Simple Machines Page
  • Back to the Stickman Physics Home Page
  • For video tutorials and other physics resources check out HoldensClass.com
  • Find many of your animation resources in one place at the StickMan Physics Gallery
  • Equation Sheet

StickMan Physics Logo  StickMan Physics Home

Stickman Physics Music Page

Unit 1: One Dimensional Motion
Unit 2: 2D Motion
Unit 3: Newton’s Laws and Force
Unit 4: Universal Gravitation and Circular Motion
Unit 5: Work, Power, Mechanical Advantage, and Simple Machines
Unit 6: Momentum, Impulse, and Conservation of Momentum
Unit 7: Electrostatics
Unit 8: Current and Circuits
Unit 9: Magnetism and Electromagnetism
Unit 10: Intro to Waves
Unit 11: Electromagnetic Waves
Unit 12: Nuclear Physics

AP Physics 1 Pages (Deeper Dive into Concepts)

DIY Creations for Fun and Physics

Teachers: Do you want lessons and handouts already put together?  Find resources at TeachersPayTeachers.

©2025 StickMan Physics | Built using WordPress and Responsive Blogily theme by Superb

Terms and Conditions - Privacy Policy